In vitro maturation of bovine oocytes in the presence of growth hormone accelerates nuclear maturation and promotes subsequent embryonic development

Author(s):  
F. Izadyar ◽  
B. Colenbrander ◽  
M.M. Bevers
Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Rosiara Rosária Dias Maziero ◽  
Carlos Renato de Freitas Guaitolini ◽  
Daniela Martins Paschoal ◽  
André Maciel Crespilho ◽  
Bianca Andriolo Monteiro ◽  
...  

SummaryThis study evaluated the effects of oocyte meiosis inhibitors roscovitine (ROS) and butyrolactone I (BL-I) on in vitro production of bovine embryos. Bovine oocytes were maintained in pre in vitro maturation (pre-IVM) with 25 µM ROS or 100 µM BL-I for 24 h to delay meiosis and for 24 h in in vitro maturation (IVM). Following this treatment, the nuclear maturation index was evaluated. All embryos degenerated following this procedure. In the second set of experiments, oocytes were maintained for 6 or 12 h in pre-IVM with the following three treatments: ROS (25 µM or 12.5 µM), BL-I (100 µM or 50 µM) or a combination of both drugs (6.25 µM ROS and 12.5 µM BL-I). Oocytes were cultivated for 18 or 12 h in IVM. When a meiosis-inducing agent was used during pre-IVM for 24 h, more degenerated oocytes were observed at the end of the IVM period. This effect decreased when the meiotic blocking period was reduced to 6 or 12 h. No significant differences were observed in the blastocyst production rate of oocytes in pre-IVM for 6 h with ROS, BL-I, or ROS + BL-I compared with that of the control group (P > 0.05). However, inhibition of oocytes for 12 h resulted in decreased embryo production compared with that in the controls (P < 0.05). There was no difference in the post-vitrification embryo re-expansion rate between the study groups, showing that the meiotic inhibition for 6 or 12 h did not alter the embryo cryopreservation process.


2016 ◽  
Vol 28 (2) ◽  
pp. 235
Author(s):  
J. D. Yoon ◽  
E. Lee ◽  
S.-H. Hyun

Growth differentiation factor-8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. SB-431542 (SB) is a specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors such as ALK4, ALK5, and ALK7. The purpose of this study is investigation of the effects of GDF8 and SB on porcine oocytes during in vitro maturation and subsequent embryonic development. We first performed ELISA to detect GDF8 concentrations in follicular fluid for each size of follicle; sizes were as follows: small (<3 mm), medium (>3 mm and <6 mm), and large (>6 mm) follicle. After detection of the GDF8 concentration in follicular fluid, we investigated the effect of GDF8 and SB treatment during in vitro maturation (IVM) on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, and embryonic development after IVF and parthenogenetic activation (PA). Data were analysed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science, IBM, New York, NY, USA) mean ± SEM. The ELISA result showed different concentrations of GDF8 for each grade of follicular fluid: small, 0.479 ng mL–1; medium, 0.668 ng mL–1; and large, 1.318 ng mL–1. During the IVM process, 1.318 ng mL–1 of GDF8 and 5 ng mL–1 of SB were added to the maturation medium as control, SB, SB+GDF8, and GDF8 treatment groups. After 44 h of IVM, GDF8 group (90.4%) showed a significantly higher nuclear maturation rate than control and SB+GDF8 groups (85.4 and 81.7%). The SB group (78.9%) showed significantly reduced nuclear maturation rate compared with control (P < 0.05). The GDF8 treatment group showed a significant decreased intracellular ROS and increased GSH levels compared with other groups (P < 0.05). The SB+GBF8 treatment group showed a significantly better cytoplasmic maturation than the SB treatment group. In the PA embryonic development analysis, the GDF8 treatment group showed a significantly higher blastocyst formation rate compared with other groups (47.9, 37.2, 46.4, and 58.7% respectively; P < 0.05). In the IVF embryonic development analysis, the GDF8 treatment groups showed significantly higher blastocyst formation rate compared with the SB group (28.2 and 42.2%, respectively; P < 0.05). In conclusion, treatment with GDF8 during porcine oocyte IVM improved the embryonic developmental competence via increased cytoplasmic maturation and led to better oocyte maturation from the ALK receptor inhibition by SB.


2018 ◽  
Vol 30 (1) ◽  
pp. 226
Author(s):  
F. C. Castro ◽  
L. Schefer ◽  
K. L. Schwarz ◽  
H. Fernandes ◽  
R. C. Botigelli ◽  
...  

Melatonin mediates several processes in animal reproduction and has drawn attention for its potent antioxidant, anti-apoptotic, anti-inflammatory action and, more recently, for its benefits on oocyte maturation and embryo development in vitro. The aim of this study was to assess the effect of melatonin during the in vitro maturation (IVM) on nuclear maturation of bovine oocytes and gene expression in their corresponding cumulus cells (CC). Bovine cumulus–oocyte complexes (COC) were obtained by aspiration of follicles (2-6 mm) from slaughterhouse ovaries, selected (grades I and II) and transferred to 4 well plates (25-30 COC/well) containing IVM medium [TCM-199 supplemented with sodium bicarbonate (26 mM), sodium pyruvate (0.25 mM), FSH (0.5 µg mL−1), LH (5.0 µg mL−1), 0.3% BSA, and gentamicin (50 µg mL−1)] with 0, 10−5, 10−7, 10−9 or 10−11 M melatonin and cultured for 24 h at 38.5°C and 5% CO2. At the end of IVM, oocytes were stained with Hoechst 33342 (10 μg mL−1) and evaluated for nuclear maturation rate. The CC were evaluated for the expression of antioxidant (SOD1, SOD2, GPX4), pro-apoptotic (P53, BAX) and expansion-related genes (PTX3, HAS1, HAS2). For transcript detection in CC, RNA isolation was performed with TRIzol®Reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcription with High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). Relative quantification of transcripts was performed by RT-qPCR using 3 endogenous controls (β-actin, GAPDH, PPIA). Nuclear maturation rate and gene expression were tested by ANOVA and means were compared by Tukey’s test (6 replicates). In CC, the different concentrations of melatonin did not significantly alter expression of the investigated genes (P > 0.05), although all concentrations provided a numerical increase in the expression of the antioxidant SOD1 and of the expansion-related genes PTX3 and HAS2. Regarding the pro-apoptotic genes, concentrations of 10−11 and 10−9 M were able to reduce only numerically the expression of BAX and P53, respectively. In oocytes, the rate of nuclear maturation was not different among the tested treatments (P > 0.05), but it was numerically higher in the 10−7 M melatonin treated group compared with the control (69.71 ± 13.76% v. 88.1 ± 12.54%). In conclusion, under the studied conditions, melatonin was unable to improve maturation rate or to affect the expression of antioxidant, pro-apoptotic, and expansion-related genes in CC. Melatonin during IVM has shown variable results in different studies and appears to show different effects depending on culture conditions and parameters studied. In order to take advantage of the possible positive antioxidant effects of melatonin, other culture conditions and parameters should be investigated. In a next step, melatonin will be included during in vitro culture of embryos to evaluate its possible cytoprotective role, because such embryos are more exposed to oxidative stress during in vitro culture, and to investigate its benefits on developmental competence in vitro. This reaesrch was funded by FAPESP (2015/20379-0; 2014/17181-0).


2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 227-227
Author(s):  
Camila Silva ◽  
Alicio Martins ◽  
Renata Sanches Calegari ◽  
Marcelo Carnelli Frade ◽  
Diego Gouvea Souza ◽  
...  

Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.


2015 ◽  
Vol 27 (1) ◽  
pp. 240
Author(s):  
J. D. Yoon ◽  
E. Lee ◽  
S.-H. Hyun

Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. The purpose of this study was to investigate the effects of GDF8 on in vitro porcine oocytes maturation and subsequent embryonic development after pathenogenetic activation (PA) and in vitro fertilization (IVF). We investigated nuclear maturation, intracellular glutathione (GSH), reactive oxygen species (ROS) levels, sperm penetration (SP) analysis, and subsequent embryonic development after PA and IVF. Each concentration (0, 1, 10, and 100 ng mL–1) of GDF8 was added in maturation medium during process of in vitro maturation. Data were analysed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science) mean ± s.e.m. After 44 h of IVM, no significant difference was observed on nuclear maturation from the different concentration (0, 1, 10, and 100 ng mL–1) of GDF8 treatment groups (85.5, 85.9, 89.4, and 87.6%, respectively) compared with the control (P > 0.05). The 10- and 100-ng mL–1 GDF8-treated groups showed a significant (P < 0.05) decrease in intracellular ROS levels compared with other groups. The embryonic developmental competence after PA was affected with GDF8 treatment during IVM. The 10- and 100-ng mL–1 treatment groups showed significantly (P < 0.05) higher cleavage rates (67.5 and 69.1%, respectively) compared with control group (53.7%). The 10- and 100-ng mL–1 treatment groups also showed significantly (P < 0.05) higher blastocyst formation rates (50.5 and 52.7%, respectively) compared with other groups (34.5 and 35.8%). The IVF embryonic developmental competence also was affected with GDF8 treatment during IVM. The 10-ng mL–1 treatment group showed a significantly (P < 0.05) higher blastocyst formation rates and total cell number compared with control (21.5 and 131.3 v. 15.0 and 92.6%, respectively). Also, in the sperm penetration assessment, the 10- and 100-ng mL–1 treatment groups showed higher mono spermy ratio and fertilization efficiency (32.7 and 27.1, 32.0 and 26.5 v. 22.6 and 19.7%, respectively) than control, which was significant (P < 0.05). In conclusion, the treatment with 10 ng mL–1 of GDF8 during IVM improved the PA and IVF porcine embryo developmental competence by decreasing the intracellular ROS levels.This work was supported, in part, by a grant from the Next-Generation BioGreen 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2013R1A2A2A04008751), Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document